Старые друзья — ключ к аутоиммунным заболеваниям

Биотехнологии – медицине будущего

Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего», состоявшейся в новосибирском Академгородке в июле 2017 г. Среди организаторов научного форума – Институт химической биологии и фундаментальной медицины и Институт цитологии и генетики СО РАН, а также Новосибирский национальный исследовательский государственный университет, где биомедицинские исследования ведутся в рамках стратегической академической единицы «Синтетическая биология», объединяющей ряд российских и зарубежных участников, в первую очередь институты СО РАН биологического профиля. В первой, вводной статье выпуска ее авторы дают обзор самых актуальных направлений и перспективных результатов исследований, связанных с разработкой и внедрением в практическую медицину новых генно-инженерных, клеточных, тканевых, иммунобиологических и цифровых технологий, часть из которых детально представлена в других статьях номера

Стремительное развитие биологической науки, обусловленное появлением высокопроизводительных приборов и созданием методов манипулирования информационными биополимерами и клетками, подготовило фундамент для развития медицины будущего. В результате исследований последних лет были разработаны эффективные диагностические методы, появились возможности для рационального конструирования противовирусных, противобактериальных и противоопухолевых препаратов, средств генотерапии и геномного редактирования. Современные биомедицинские технологии все в большей степени начинают влиять на экономику и определять качество жизни людей.

К настоящему времени детально исследованы строение и функции основных биологических молекул и разработаны методы синтеза белков и нуклеиновых кислот. Эти биополимеры по своей природе являются «интеллектуальными» материалами, так как способны высокоспецифично «узнавать» и воздействовать на определенные биологические мишени. Путем направленного «программирования» таких макромолекул можно создавать рецепторные молекулярные конструкции для аналитических систем, а также лекарственные препараты, избирательно воздействующие на конкретные генетические программы или белки.

«Интеллектуальные препараты», созданные методами синтетической биологии, открывают возможности для таргетной (целенаправленной) терапии аутоиммунных, онкологических, наследственных и инфекционных заболеваний. Это дает основание говорить о внедрении в медицинскую практику подходов персонализированной медицины, ориентированной на лечение конкретного человека.

С помощью современных медицинских технологий и фармпрепаратов сегодня удается излечивать многие болезни, представлявшие в прошлом огромную медицинскую проблему. Но с развитием практической медицины и ростом продолжительности жизни все более актуальной становится задача здравоохранения в самом прямом смысле этого слова: не просто бороться с болезнями, но поддерживать имеющееся здоровье, чтобы человек мог вести активный образ жизни и оставаться полноценным членом общества до глубокой старости.

БУДЕМ ЗДОРОВЫ! Современные методы геномного секвенирования широко внедряются в медицину, и в ближайшем будущем все пациенты будут иметь генетические паспорта. Сведения о наследственных особенностях пациента – ​основа прогностической персонализированной медицины. Предупрежденный, как известно, вооружен. Человек, осведомленный о возможных рисках, может организовать свою жизнь таким образом, чтобы не допустить развития заболевания. Это касается и образа жизни, и выбора продуктов питания и терапевтических препаратов.
При условии постоянного отслеживания набора маркеров, сигнализирующих об отклонениях в работе организма, можно вовремя провести их коррекцию. Уже сейчас существует множество методов мониторинга состояния организма: например, с помощью датчиков, следящих за работой сердечно-сосудистой системы и качеством сна или устройств, анализирующих газообразные продукты в выдыхаемом человеком воздухе. Огромные возможности открываются в связи с развитием малоинвазивных технологий жидкостной биопсии и технологий анализа белков и пептидов, циркулирующих в кровотоке. На ранних стадиях болезни корректировать состояние организма во многих случаях можно «мягкими» методами: меняя характер питания, используя добавочные микроэлементы, витамины и пробиотики. В последнее время особое внимание уделяется возможностям корректировки отклонений в составе кишечной микрофлоры человека, которые ассоциированы с развитием большого числа патологических состояний.
Подробнее

Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни.

В этом смысле основную задачу медицины будущего можно сформулировать как «управление здоровьем». Сделать это вполне реально, если иметь полную информацию о наследственности человека и обеспечить мониторинг ключевых показателей состояния организма.

«Умная» диагностика

Для управления здоровьем необходимо иметь эффективные и простые малоинвазивные методы ранней диагностики заболеваний и определения индивидуальной чувствительности к терапевтическим препаратам, а также факторам внешней среды. Например, должны быть решены (и уже решаются) такие задачи, как создание систем для генной диагностики и выявления возбудителей инфекционных заболеваний человека, разработка методов количественного определения белков и нуклеиновых кислот – ​маркеров заболеваний.

Во время развития онкологических заболеваний клетки подвергаются эпигенетическим модификациям, таким как метилирование ДНК. Это приводит к инактивации генов-супрессоров опухолевого роста, а характер метилирования некоторых генов может служить одним из диагностических опухолевых маркеров (Павлов и др., 2011). На графике – степень метилирования нуклеотида цитозина в промоторной области гена глутатион-S-трансферазы P1 (GSTP1). Этот показатель заметно различается у здоровых мужчин и больных раком предстательной железы

Отдельно стоит выделить создание методов ранней неинвазивной диагностики (жидкостная биопсия) опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания.

Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует.

В ИХБФМ СО РАН методом высокопроизводительного параллельного секвенирования на платформе SOLiD проанализировано разнообразие малых некодирующих РНК в плазме крови у здоровых людей и больных немелкоклеточным раком легкого. Удалось охарактеризовать изменения внеклеточного транскриптома (совокупности всех молекул РНК, синтезирующихся в организме человека при образовании злокачественных опухолей). На диаграмме отражены уровни экспрессии микроРНК в образцах, полученных от здоровых доноров и пациентов с плоскоклеточной карциномой. Анализ этой информации позволил установить значимые различия в уровнях экспрессии 18 микроРНК у здоровых и больных людей, что может иметь потенциальную диагностическую ценность (Ponomaryova, Morozkin et al., 2016)

Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК, т. е. те РНК, которые не являются матрицей для синтеза белков. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики. В Институте молекулярной и клеточной биологии СО РАН (ИМКБ СО РАН, Новосибирск) и ИХБФМ СО РАН идентифицирован ряд микроРНК – ​перспективных маркеров опухолевых заболеваний.

УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней (туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных), фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК.
ИХБФМ СО РАН участвовал в реализации двух крупных международных проектов по разработке олигонуклеотидных микрочипов, финансировавшихся американской Программой сотрудничества в области биотехнологий Департамента здравоохранения США (Biotechnology Engagement Program, US Department of Health and Human Services, BTEP/DHHS). В рамках первого проекта с участием специалистов ИМБ им. В. А. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов (на стеклянной подложке и с гелевыми спотами), а также портативный флуоресцентный детектор для их анализа. В рамках второго проекта был создан универсальный микрочип для типирования вируса гриппа А, позволяющий достоверно различать 30 подтипов этого вируса на основе определения двух поверхностных белков вируса – ​гемагглютинина и нейраминидазы

С помощью современных технологий секвенирования РНК и ДНК может быть создана платформа для диагностики и прогноза онкологических заболеваний человека на основе анализа содержания микроРНК и генотипирования, т. е. установления конкретных генетических вариантов того или иного гена, а также для определения профилей экспрессии (активности) генов. Такой подход предполагает возможность быстрого и одновременного проведения множества анализов с помощью современных устройств – ​биологических микрочипов.

Гелевый биочип для определения генотипа и подтипа вируса гепатита С, созданный в ИМБ РАН (Москва). Фото из архива лаборатории биологических микрочипов ИМБ РАН

Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. В. А. Энгельгардта Российской академии наук (Москва) еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий.

Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое.

Мировой лидер «биочипостроения» – ​американская компания Affymetrix Inc. – ​производит биочипы с высокой плотностью молекулярных зондов, основываясь на фотолитографических технологиях, использующихся для получения полупроводниковых микросхем. На одном таком чипе на площади менее 2 см 2 могут располагаться миллионы точек-спотов размером в несколько микрон. Каждая подобная точка содержит несколько миллионов одинаковых олигонуклеотидов, ковалентно связанных с поверхностью микрочипа

Развитие биоаналитических диагностических методов требует постоянного повышения чувствительности – ​способности давать достоверный сигнал при регистрации малых количеств детектируемого вещества. Биосенсоры – ​это новое поколение устройств, позволяющих специфично анализировать содержание различных маркеров заболеваний в образцах сложного состава, что особенно важно при диагностике заболеваний.

ИХБФМ СО РАН в сотрудничестве с новосибирским Институтом физики полупроводников СО РАН разрабатывает микробиосенсоры на основе полевых транзисторов, являющихся одними из самых чувствительных аналитических устройств. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента.

«Комплементарное» лекарство

Расшифровка геномов человека и возбудителей различных инфекций открыла дорогу для разработки радикальных подходов к терапии болезней путем направленного воздействия на их первопричину – ​генетические программы, ответственные за развитие патологических процессов. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.

В качестве терапевтических олигонуклеотидов наиболее широко применяются их аналоги с различными модификациями рибозофосфатного скелета, которые регулируют специфичность формирования комплементарных комплексов с целевой ДНК и повышают устойчивость олигонуклеотидов, не увеличивая токсичность. По: (Власов и др., 2014)

Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. Это свойство называется «комплементарностью»

Такое воздействие может быть осуществлено с помощью фрагментов нуклеиновых кислот – ​синтетических олигонуклеотидов, способных избирательно взаимодействовать с определенными нуклеотидными последовательностями в составе генов-мишеней по принципу комплементарности. Сама идея использовать олигонуклеотиды для направленного воздействия на гены была впервые выдвинута в лаборатории природных полимеров (впоследствии – ​отдел биохимии) Новосибирского института биоорганической химии СО РАН (ныне – ​Институт химической биологии и фундаментальной медицины СО РАН). В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК.

Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов (антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования). Исследования последних лет показали, что на основе антисмысловых олигонуклеотидов можно получить широкий спектр биологически активных веществ, действующих на различные генетические структуры и запускающих процессы, приводящие к временному «выключению» генов либо изменению генетических программ – ​появлению мутаций. Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции.

Регулировать экспрессию генов с помощью антисмысловых олигонуклеотидов можно на разных уровнях, начиная с процесса «транскрипции» – считывания генетической информации с ДНК на РНК, который происходит в ядре клетки и включает в себя стадию созревания РНК, в результате чего образуется пул молекул РНК с разными функциями (транспортная тРНК, переносящая аминокислоты; рибосомальная рРНК, входящая в состав рибосом; и т. д.), заканчивая процессом «трансляции» – синтезом белка на матричной РНК (мРНК), который происходит в цитоплазме на рибосомах. Все терапевтические олигонуклеотиды традиционно принято подразделять на «ген-направленные» – их мишенью является геномная ДНК и на собственно «антисмысловые» – их мишенью являются РНК. Отдельно выделяют группу олигонуклеотидов, работащих по механизму РНК-интреференции. По: (Власов и др., 2014)

«ЛЕЧИМ» БЕЛОК Регуляция экспрессии генов под действием «антисмысловых» олигонуклеотидов возможна на различных уровнях. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. е. синтеза белка. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. При одном из таких нарушений в клетках синтезируется «неправильный» дистрофин – ​белок, являющийся важным структурным компонентом мышечной ткани. Это приводит к возникновению тяжелого заболевания – ​миодистрофии Дюшенна. В ИХБФМ СО РАН разработаны терапевтические олигонуклеотиды для лечения этого заболевания, и уже подана заявка на соответствующий патент.
Подробнее

Сегодня антисмысловые олигонуклеотиды и РНК, подавляющие функции мРНК и вирусных РНК, применяются не только в биологических исследованиях. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику.

Лаборатория биомедицинской химии ИХБФМ СО РАН, работающая в этом направлении, была создана в 2013 г. благодаря научному мегагранту Правительства РФ. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. Альтман. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты.

Комплементарный комплекс фрагмента ДНК-мишени с олигонуклеотидом, содержащим фосфорилгуанидиновые группы, оказался почти таким же устойчивым, как и природная спираль ДНК. По: (Пышный, Стеценко, 2014)

В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность.

В ИХБФМ СО РАН впервые в мире были синтезированы фосфорилгуанидиновые производные олигонуклеотидов. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях.

Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc. (США). После многолетних клинических исследований были введены в медицинскую практику антисмысловые препараты: Kynamro – ​снижающий уровень «плохого» холестерина, Alicaforsen – ​для лечения язвенного колита и Spinraza – ​для терапии дистрофии Дюшенна. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Лидер в создании терапевтических интерферирующих РНК – ​компания Alnylam Pharmaceuticals – ​также проводит клинические испытания целой серии препаратов для лечения тяжелых заболеваний (таких как наследственный амилоидоз, тяжелые формы гиперхолестеролемии, гемофилия), эффективные методы терапии которых в настоящее время отсутствуют

Читать статью  Иглоукалывание. Суть методики, показания, противопоказания

«Антисмысловое» воздействие на матричные РНК не ограничивается простым блокированием сплайсинга (процесса «созревания» РНК) или синтеза белка. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. При этом олигонуклеотид – ​индуктор расщепления – ​может в дальнейшем связаться с другой молекулой РНК и повторить свое действие. В ИХБФМ СО РАН исследовали действие олигонуклеотидов, образующих при связывании с мРНК комплексы, которые могут служить субстратами фермента РНКазы Р. Этот фермент и сам представляет собой РНК с каталитическими свойствами (рибозим).

Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции. Суть этого явления в том, что, попадая в клетку, длинные дцРНК разрезаются на короткие фрагменты (так называемые малые интерферирующие РНК, siPНК), комплементарные определенному участку матричной РНК. Связываясь с такой мРНК, siPНК запускают действие ферментативного механизма, разрушающего молекулу-мишень.

Фермент РНКаза P обычно занимается удалением нуклеотидов с определенного (5’-) конца молекулы РНК – предшественника транспортной РНК, структура которого напоминает «клеверный лист». Но фермент может делать это с фрагментом любой РНК, который будет напоминать «стебелек листа»: главное, чтобы РНК в этом месте была двуцепочечная, и рядом находился другой (3’-) свободный конец молекулы. Такую структуру можно получить с помощью направляющего олигонуклеотида, что позволит разрезать РНК-мишень в строго определенном месте. По: (Альтман, 2014)

Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. В ИХБФМ СО РАН на основе малых интерферирующих РНК сконструированы перспективные противоопухолевые препараты, показавшие хорошие результаты в экспериментах на животных. Одна из интересных находок – ​двуцепочечные РНК оригинального строения, стимулирующие в организме производство интерферона, эффективно подавляющие процесс метастазирования опухолей. Хорошее проникновение препарата в клетки обеспечивают носители – ​новые катионные липосомы (липидные пузырьки), разработанные совместно со специалистами Московского государственного университета тонких химических технологий имени М. В. Ломоносова.

Новые роли нуклеиновых кислот

Разработка метода полимеразной цепной реакции, позволяющего в неограниченных количествах размножать нуклеиновые кислоты – ​ДНК и РНК, и появление технологий молекулярной селекции нуклеиновых кислот сделали возможным создание искусственных РНК и ДНК с заданными свойствами. Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами. На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике.

Один из мировых лидеров в этой области – ​американская компания Soma Logic Inc. – ​создает так называемые сомамеры, которые селективно отбирают из библиотек химически модифицированных нуклеиновых кислот по уровню сродства к тем или иным мишеням. Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось.

Принцип действия переключаемого аптасенсора на основе бивалентного аптамера базируется на последовательном связывании с анализируемой и репортерной молекулой. Аптамер представляет собой молекулу ДНК или РНК, в состав которой входят два узнающих фрагмента (зеленый и голубой на схеме) и соединительный участок (красный). Один из узнающих фрагментов может связывать только молекулу анализируемого белка, например гликированный гемоглобин. Другой узнающий фрагмент, связывающийся с репортерной молекулой (например, люминесцентным белком обелином), начинает «работать» только после захвата молекулы-мишени, что определенным образом изменяет пространственную структуру всего сенсора (Vorobyeva, Vorobjev et al., 2016)

Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза. Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Сегодня созданы приборы, позволяющие быстро «собирать» искусственные гены и/или бактериальные и вирусные геномы, аналоги которых в природе отсутствуют.
Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh. Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4—8 тыс. разных олигонуклеотидов. Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс. разных олигонуклеотидов. За сутки таким образом можно получить до полумиллиона олигонуклеотидов – ​строительных блоков будущих генов

Среди аптамеров, имеющих сродство к клинически значимым мишеням, к настоящему времени имеются кандидаты на терапевтические препараты, достигшие третьей, ключевой фазы клинических испытаний. Один из них – ​Macugen – ​уже используется в клинической практике для терапии заболеваний сетчатки глаза; препарат для лечения возрастной макулярной дегенерации сетчатки Fovista успешно заканчивает испытания. И на очереди множество подобных препаратов.

Но терапия – ​это не единственное предназначение аптамеров: они вызывают огромный интерес у биоаналитиков в качестве распознающих молекул при создании аптамерных биосенсоров.

В ИХБФМ совместно с Институтом биофизики СО РАН (Красноярск) разрабатываются биолюминесцентные аптасенсоры с переключаемой структурой. Получены аптамеры, которые играют роль репортерного блока сенсора, к Са 2+ -активируемому фотопротеину обелину, представляющему собой удобную биолюминесцентную метку. Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце. В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета.

Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная (информационная) РНК. Компания Moderna Therapeutics (США) сейчас проводит масштабные клинические исследования мРНК. При попадании в клетку мРНК действуют в ней как ее собственные. В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания. Большая часть таких потенциальных терапевтических препаратов направлена против инфекционных (вирус гриппа, вирус Зика, цитомегаловирус и др.) и онкологических заболеваний.

Белки как лекарство

Огромные успехи синтетической биологии за последние годы отразились и в разработке технологий производства терапевтических белков, уже широко применяющихся в клинике. В первую очередь это относится к противоопухолевым антителам, с помощью которых стала возможной эффективная терапия целого ряда онкологических заболеваний.

Сейчас появляются все новые противоопухолевые белковые препараты. Примером может служить препарат лактаптин, созданный в ИХБФМ СО РАН на основе фрагмента одного из основных белков молока человека. Исследователи обнаружили, что этот пептид индуцирует апоптоз («самоубийство») клеток стандартной опухолевой клеточной культуры – ​аденокарциномы молочной железы человека. С использованием методов генной инженерии был получен ряд структурных аналогов лактаптина, из которых был выбран наиболее эффективный.

Доклинические испытания препарата лактаптина на лабораторных животных, которым была привита злокачественная опухоль, показали его терапевтическую эффективность (Рихтер, 2013).На фото – лабораторная мышь, которой вводился лактаптин (внизу), и животное, не получавшее лечения лактаптином (вверху). Справа – образцы экспериментальной партии препарата

Испытания на лабораторных животных подтвердили безопасность препарата и его противоопухолевую и антиметастатическую активность в отношении ряда опухолей человека. Уже разработана технология получения лактаптина в субстанции и лекарственной форме, изготовлены первые экспериментальные партии препарата.

Терапевтические антитела все шире применяются и для лечения вирусных инфекций. Специалистам ИХБФМ СО РАН удалось генно-инженерными методами создать гуманизированное антитело против вируса клещевого энцефалита. Препарат прошел все доклинические испытания, доказав свою высокую эффективность. Оказалось, что защитные свойства искусственного антитела в сто раз выше, чем коммерческого препарата антител, получаемого из сыворотки доноров.

Вторжение в наследственность

Открытия последних лет расширили возможности генотерапии, которые до недавнего времени представлялась фантастикой. Технологии геномного редактирования, основанные на применении РНК-белковой системы CRISPR/Cas, способны распознавать определенные последовательности ДНК и вносить в них разрывы. При «ремонте» (репарации) таких нарушений можно исправлять мутации, ответственные за заболевания, или вводить в терапевтических целях новые генетические элементы.

Редактирование генов открывает перспективы радикального решения проблемы генетических заболеваний путем модификации генома при использовании экстракорпорального оплодотворения. Принципиальная возможность направленного изменения генов эмбриона человека уже доказана экспериментально, и создание технологии, обеспечивающей появление на свет детей, свободных от наследственных заболеваний, задача ближайшего будущего.

С помощью геномного редактирования можно не только «исправлять» гены: этот подход можно использовать для борьбы с вирусными инфекциями, не поддающимися обычной терапии. Речь идет о вирусах, встраивающих свой геном в клеточные структуры организма, где он оказывается недоступным для современных противовирусных препаратов. К таким вирусам относятся ВИЧ‑1, вирусы гепатита В, папилломавирусы, полиомавирусы и ряд других. Системы геномного редактирования могут инактивировать вирусную ДНК внутри клетки, разрезав ее на безопасные фрагменты либо внеся в нее инактивирующие мутации.

Очевидно, что применение системы CRISPR/Cas в качестве средства коррекции мутаций человека станет возможным лишь после ее усовершенствования с целью обеспечения высокого уровня специфичности и проведения широкого спектра испытаний. Кроме того, для успешной борьбы с опасными вирусными инфекциями необходимо решить проблему эффективной доставки терапевтических агентов в целевые клетки.

Сначала была клетка – ​стволовая

Одним из наиболее быстро развивающихся направлений в медицине является клеточная терапия. В ведущих странах уже проходят клинические испытания клеточных технологий, разработанных для лечения аутоиммунных, аллергических, онкологических и хронических вирусных заболеваний.

В России пионерные работы по созданию средств терапии на основе стволовых клеток и клеточных вакцин были выполнены в Институте фундаментальной и клинической иммунологии СО РАН (Новосибирск). В результате исследований были разработаны методы лечения онкологических заболеваний, гепатита В и аутоиммунных заболеваний, которые уже начали применяться в клинике в экспериментальном режиме.

Чрезвычайно актуальными в наши дни стали проекты создания банков культур клеток пациентов с наследственными и онкологическими заболеваниями для тестирования фармакологических препаратов. В Новосибирском научном центре такой проект уже реализуется межинститутским коллективом под руководством проф. С. М. Закияна. Новосибирские специалисты отработали технологии внесения мутаций в культивируемые клетки человека, в результате чего были получены клеточные модели таких заболеваний, как боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия, синдром удлиненного интервала QT и гипертрофическая кардиомиопатия.

Новосибирским специалистам удалось разработать искусственные протезы кровеносных сосудов, по своим свойствам практически не отличающиеся от природных. Полимерные заготовки имеют высокую механическую устойчивость и прочность, способны поддерживать популяции мышечных и эндотелиальных клеток, удобны для манипуляции и не вызывают воспалительной реакции (Лактионов и др., 2013).На фото – протезы кровеносного сосуда (слева) и сердечного клапана (справа), полученные методом электроспиннинга

Разработка методов получения из обычных соматических клеток плюрипотентных стволовых, способных превратиться в любую клетку взрослого организма, привела и к появлению клеточной инженерии, позволяющей восстанавливать пораженные структуры организма. Удивительно быстро развиваются технологии получения трехмерных структур для клеточной и тканевой инженерии на основе биоразрушаемых полимеров: протезов сосудов, трехмерных матриксов для выращивания хрящевой ткани и конструирования искусственных органов.

Так, специалисты ИХБФМ СО РАН и Национального медицинского исследовательского центра им. Е. Н. Мешалкина (Новосибирск) разработали технологию создания протезов сосудов и сердечных клапанов методом электроспиннинга. С помощью этой технологии из раствора полимера можно получить волокна толщиной от десятков нанометров до нескольких микрон. В результате серии экспериментов удалось отобрать изделия с выдающимися физическими характеристиками, которые сейчас успешно проходят доклинические испытания. Благодаря высокой био- и гемосовместимости такие протезы со временем замещаются собственными тканями организма.

Микробиом как объект и субъект терапии

К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека. Ведутся исследования и сложных микробиологических сообществ, постоянно связанных с человеком, – ​микробиомов.

Существенный вклад в эту область исследований внесли и отечественные ученые. Так, специалисты ГНЦ ВБ «Вектор» (Кольцово, Новосибирская обл.) впервые в мире расшифровали геномы вирусов Марбург и натуральной оспы, а ученые ИХБФМ СО РАН – ​геномы вируса клещевого энцефалита, возбудителей клещевого боррелиоза, распространенных на территории РФ. Также были изучены микробные сообщества, ассоциированные с различными видами опасных для человека клещей.

В развитых странах сегодня активно ведутся работы, направленные на создание средств регуляции микробиома организма человека, в первую очередь его пищеварительного тракта. Как оказалось, от состава микробиома кишечника в огромной степени зависит состояние здоровья. Методы воздействия на микробиом уже существуют: например, обогащение его новыми терапевтическими бактериями, использование пробиотиков, благоприятствующих размножению полезных бактерий, а также прием бактериофагов (вирусов бактерий), избирательно убивающих «вредные» микроорганизмы.

В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. Россия – ​одна из немногих стран, где применение бактериофагов в медицине разрешено. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии.

Бактериофаги могут быть использованы не только напрямую в качестве бактерицидных агентов: их можно применять в качестве носителей лекарственных препаратов, антител либо терапевтических химических соединений. На фото – фаги, несущие на своей поверхности антитела к вирусу осповакцины, атакуют этот вирус. Атомно-силовая микроскопия. Фото Г. Шевелева и Д. Пышного

Решением ее занимаются в ряде научно-исследовательских организаций РФ, в том числе в ИХБФМ СО РАН. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами. Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений. Разрабатываются и методы коррекции нарушений состава микробиома человека.

Совершенно новые возможности использования вирусов открываются в связи с созданием технологий получения интеллектуальных систем высокоизбирательного действия на определенные клетки. Речь идет об онколитических вирусах, способных поражать только опухолевые клетки. В экспериментальном режиме несколько таких вирусов уже применяются в Китае и США. Работы в этой области ведутся и в России, в них принимают участие специалисты из московских и новосибирских научно-исследовательских организаций: ИМБ РАН, ГНЦ ВБ «Вектор», Новосибирского государственного университета и ИХБФМ СО РАН.

Мобильное приложение Welltory, разработанное с участием ученых и медиков, позволяет на основе вариабельности сердечного ритма и обратной связи с пользователем оценивать текущее самочувствие и получать рекомендации по поддержанию здоровья

Быстрое развитие синтетической биологии дает основание ожидать в ближайшие годы важных открытий и появления новых биомедицинских технологий, которые избавят человечество от многих проблем и позволят реально управлять здоровьем, а не только лечить наследственные и «благоприобретенные» заболевания.

Фронт исследований в этой области чрезвычайно широк. Уже сейчас доступные гаджеты представляют собой не просто игрушки, но реально полезные приборы, ежедневно обеспечивающие человека информацией, необходимой для контроля и поддержания здоровья. Новые технологии быстрого углубленного обследования дают возможность предсказать или своевременно обнаружить развитие болезни, а персонализированные препараты на основе «умных» информационных биополимеров позволят радикально решить проблемы борьбы с инфекционными и генетическими заболеваниями в самом ближайшем будущем.

Брызгунова О. Е., Лактионов П. П. Внеклеточные нуклеиновые кислоты мочи: источники, состав, использование в диагностике // Acta Naturae. 2015. Т. 7. № 3(26). С. 54—60.

Власов В. В., еще две фамилии и др. Комплементарные здоровью. Прошлое, настоящее и будущее антисмысловых технологий // НАУКА из первых рук. 2014. T. 55. № 1. С. 38—49.

Власов В. В., Воробьев П. Е., Пышный Д. В. и др. Правда о фаготерапии, или памятка врачу и пациенту // НАУКА из первых рук. 2016. Т. 70. № 4. С. 58—65.

Власов В. В., Закиян С. М., Медведев С. П. «Редакторы геномов». От «цинковых пальцев» до CRISPR // НАУКА из первых рук. 2014. Т. 56. № 2. С. 44—53.

Лифшиц Г. И., Слепухина А. А., Субботовская А. И. и др. Измерение параметров гемостаза: приборная база и перспективы развития // Медицинская техника. 2016. Т. 298. № 4. С. 48—52.

Читать статью  Миопия: как остановить развитие близорукости?

Рихтер В. А. Женское молоко – источник потенциального лекарства от рака // НАУКА из первых рук. 2013. Т. 52. № 4. С. 26—31.

Kupryushkin M. S., Pyshnyi D. V., Stetsenko D. A. Phosphoryl guanidines: a new type of nucleic Acid analogues // Acta Naturae. 2014. V. 6. № 4(23). P. 116—118.

Nasedkina T. V., Guseva N. A., Gra O. A. et al. Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays // Mol Diagn Ther. 2009. V. 13. N. 2. P. 91—102.

Ponomaryova A. A., Morozkin E. S., Rykova E. Y. et al. Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer // Experimental Lung Research. 2016. V. 42 N. 2. P. 95—102.

Vorobyeva M., Vorobjev P. and Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications // Molecules. 2016. V. 21 N. 12. P. 1612—1633.

Старые друзья — ключ к аутоиммунным заболеваниям

Обзор

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Всю свою историю человечество страдало от различных инфекционных заболеваний и боролось с ними. Эпидемии чумы и холеры тысячелетиями наводили ужас на цивилизованный мир. Благодаря современным достижениям гигиены и медицины эти враги побеждены. Но не потеряли ли мы что-то важное на этом пути?

Конкурс «био/мол/текст»-2017

Эта Статья заслужила приз зрительских симпатий.

Работа участвовала в номинации «Биомедицина сегодня и завтра» конкурса «био/мол/текст»-2017.

«Диа-М»

Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

«Инвитро»

Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро».

«Альпина нон-фикшн»

Человеческий организм — штука несовершенная. Мы стареем, болеем и умираем. Если в каменном веке ведущей причиной смерти были травмы, голод и дикие животные, в Средние века — чума и холера, то сейчас, по данным Всемирной организации здравоохранения, это онкологические и сердечно-сосудистые заболевания. И если посмотреть на научные бюджеты и распределение грантов в биомедицине, мы увидим, что слово «рак» в заявке в разы повышает ваши шансы получить финансирование.

Однако есть заболевания, возможно, не столь смертельные, но куда сильнее бьющие по нам экономически. Это аутоиммунные заболевания, такие, как рассеянный склероз, системная красная волчанка или диабет 1-го типа. Если рак и инсульты чаще всего встречаются у пожилых людей, то аутоиммунные состояния обычно манифестируют (проявляются в виде симптомов) у молодых людей трудоспособного возраста и либо ложатся тяжким бременем на бюджет страны или больного (россияне, больные диабетом, если не получают инсулин от государства, тратят на поддержание собственной жизни от 1 до 5–6 тысяч рублей в месяц), либо, как в случае рассеянного склероза, просто ставят крест на карьере и жизни пациента.

Особенность аутоиммунных заболеваний состоит в том, что практически ни для одного из них мы за долгие годы исследований и экспериментов не научились достигать стойкой ремиссии. Текущие решения сводятся либо к поддерживающей терапии (как в случае с инсулинозависимым диабетом), либо к попыткам отсрочить терминальную стадию заболевания, на что нацелены препараты от рассеянного склероза. До недавнего времени ситуация выглядела довольно плачевно. Дополнительно усугубляет ее тот факт, что количество людей с аутоиммунными заболеваниями растет каждый год, и мы находимся на пороге настоящей эпидемии.

Однако там, где фармацевтическая отрасль терпит одну неудачу за другой, внезапно сама природа показала, куда смотреть исследователям и откуда брать по-настоящему работающее лекарство.

История вопроса

Чтобы понять, откуда возникла проблема с аутоиммунными заболеваниями, придется заглянуть далеко в прошлое.

Весь прогресс человечества с определенной долей приближения можно считать гонкой со смертью. Палеолитические охотники страдали от болезней или голода и погибали в лапах хищников. Ответом стало приручение огня, разработка более эффективных орудий и переход от непредсказуемых и опасных охоты и собирательства к оседлости и сельскому хозяйству. В эпидемиологии этот процесс принято называть «первым эпидемиологическим переходом» (англ. First epidimiologic transition, FET).

Цель перехода в целом была достигнута. Жизнь в деревянных, а затем в каменных домах позволила более не бояться хищников. Сельское хозяйство, пусть и не со стопроцентной вероятностью, но защищало от голодной смерти. Качество и продолжительность жизни ощутимо выросли. Но на смену старым убийцам пришли новые. Дело в том, что одним из наиболее значительных следствий «перехода» стали эпидемии, которых человечество раньше не знало.

Дело в изменившемся в ходе FET образе жизни человека. До этого мы жили небольшими группами, состоявшими не более чем из 50 особей, занимавшими довольно обширные пространства. К тому же мы постоянно меняли место жительства, нигде не оставались надолго. Культура гигиены была довольно низкой — зачем следить за чистотой убежища, если ты уже съел всех мамонтов вокруг и завтра надо искать новое место?

В ходе FET люди начали надолго оставаться на одном месте, формировать более крупные группы для защиты от набегов соплеменников. Скученность и загрязнение места обитания создали оптимальные условия для развития у нас инфекций. Начались эпидемии, которые были тем свирепее, чем больше был город и чем плотнее жили в нем люди.

Новый набор «убийц» человека очень хорошо метафорически отражен в «Откровении» Иоанна Богослова (рис. 1). Силы человеческие велики, но у Бога остаются непреодолимые орудия для уничтожения рода человеческого — мор, голод и война, за которыми всегда следует смерть. И если войну можно избежать политическими мерами, к голоду можно подготовиться, то от мора можно лишь бежать со всех ног.

Воины Апокалипсиса

Рисунок 1. Васнецов В.М. «Воины Апокалипсиса», 1887.

Довольно долгое время, около 5000 лет, понадобилось человечеству, чтобы научиться справляться с инфекциями. Где-то раньше, где-то позже люди осознали важность гигиены для жизни и здоровья. Были эмпирически найдены лекарства от многих болезней. Можно сказать, весь прогресс медицины и человечества в целом происходил под постоянно довлеющим страхом новых эпидемий.

Все это не могло не отразиться на нашей культуре. Во многие мировые религии с самого начала исторического периода включались гигиенические требования. Чего стоят одни только египетские жрецы, ежедневно брившие все тело и постоянно очищавшие его от любой грязи. Слово «нечистый» во многих культурах синонимично слову «плохой», «тот, кого надо избегать». Неотделимость смерти от мора научила нас панически бояться любой нечистоты, любых признаков болезни и бежать со всех ног (рис. 2).

Le petit journal 1912 года

Рисунок 2. Обложка Le petit journal от 1 сентября 1912 года, посвященного эпидемии холеры в Индии и на Ближнем Востоке в начале 20-го века.

В настоящее время мы настолько чисты, насколько не были никогда в истории. Особенно хорошо это видно в развитых странах. Мы привыкли к тому, что во все дома подведена вода и всегда есть возможность принять ванную или душ. Мы пользуемся мылом, влажными салфетками, асептическими гелями. Мы даже моем наши дороги шампунем!

Казалось бы, ну чистые и чистые, что тут такого? При чем тут аутоиммунные заболевания? Оказывается, связь самая прямая.

Гигиеническая гипотеза

Первые наметки того, что ученые сегодня называют «гигиенической гипотезой» или «гипотезой старых друзей» появились в научной литературе еще в конце 19-го века. Этот период в истории иммунологии называют «вторым эпидемиологическим переходом» (англ. Second epidimiologic transition, SET). Он характеризуется сильным снижением заболеваемости различными инфекционными заболеваниями (бактериальными и гельминтными), а также намного более редким переходом этих заболеваний в эпидемии. Возьмем, например, чуму. Все мы из школы знаем, как сильно она влияла на судьбы Европы Средних веков. Но многие ли знают, что она отнюдь не побеждена полностью? По данным ВОЗ, в 2015 году чумой по всему миру заболели 320 человек, 77 из которых умерли. Заметьте, никакой эпидемии. Очаги оперативно локализуются, заболевшие получают адекватное лечение, почти все выздоравливают. «Черная смерть» никого больше не пугает.

Этот переход стал возможен благодаря появлению антибиотиков и других высокоэффективных противопаразитических лекарств. В развитых странах он завершился к концу 20-го века. Если в середине века в Европе каждый третий житель был поражен гельминтами [1], то в настоящий момент обнаружение носителя этих паразитов скорее редкость. Россия в этом отношении практически не отстает от развитого мира благодаря нашим сильным гигиеническим традициям. Дополнительный вклад вносит городской образ жизни, централизованное снабжение очищенной водой, контроль качества пищи и так далее.

Однако еще с 19-го века начали появляться данные, что современный городской образ жизни и общее благополучие (как правило, сопровождающееся повышенной «чистотой» жизни) приводят к определенным заболеваниям (рис. 3). Типовой аристократ викторианской эпохи обязательно имел несколько «светских» заболеваний, таких, как «сенная лихорадка» или, как мы зовем ее сейчас, аллергия на пыльцу. Более серьезным «заболеванием богатых» стал диабет первого типа [2], который был бичом «благополучного общества» до открытия целебных свойств инсулина.

Инфекционные заболевания и аутоиммунные расстройства

Рисунок 3. Обратное отношение между частотой инфекционных заболеваний и частотой иммунных расстройств с 1950 по 2000 годы. а — Изменение относительного количества заболевших различными инфекционными заболеваниями. б — Относительный рост заболеваемости аутоиммунными заболеваниями за тот же период.

Заболевания эти возникли в истории человечества внезапно и довольно-таки недавно — 200 лет назад они либо отсутствовали, либо были столь редки, что не оставили следа в медицинской литературе. Наличие связи между возникновением этих заболеваний и условиями жизни больных впервые свел воедино Дэвид Стракан в 1989 году в короткой заметке, где он постулировал «гигиеническую гипотезу» [3]. Он отметил, что сенной лихорадке больше подвержены те люди, у которых было меньше братьев и сестер в детстве. Стракан предположил, что устойчивость к сенной лихорадке передается с детскими инфекциями от сиблинга к сиблингу и является следствием сниженной гигиены.

Впоследствии многие исследователи показали то же самое на примере других аллергий и аутоиммунных реакций. К примеру, если детям из неблагополучных по гигиене регионов вроде Чили или Тайланда провести европейскую программу дегельминтизации, у них букетом высыпают аллергии [4].

Наверное, самым интересным примером тут является история с рассеянным склерозом [5–8]. Ученые решили посмотреть, что происходит, когда больной этим страшным заболеванием заражается гельминтами, и начали искать инфицированных червями пациентов с РС. Результаты были ошеломляющи. У пациентов, которые заражались определенными гельминтами (например, власоглавом Trichuris trichiura) течение заболевания практически останавливалось [6]. Во время инфекции у них на 95% снижалось количество новых бляшек в мозге (рис. 4). Результат, недостижимый ни одним современным методом терапии! Если же по каким-то причинам гельминтов требовалось удалить (например, развивалось острое воспалительное поражение кишечника), болезнь возобновлялась с той стадии, на которой остановилась при инфекции.

График появления новых бляшек в мозге

Рисунок 4. График появления новых бляшек в мозге (когортное исследование 2011 года). Круги — неинфицированные гельминтами пациенты, квадраты — инфицированные, треугольники — инфицированные, но вылеченные от гельминта (момент излечения показан черной стрелкой).

Можно сказать, власоглав поддерживал здоровье этих людей, позволяя им вести нормальный образ жизни, пока они позволяют ему жить внутри себя. Так что же происходит? Как черви справляются с задачей, с которой не способна справиться современная медицина? Для ответа на этот вопрос нам придется разобраться, как же работает наш иммунитет.

Иммунный ответ

Иммунная система призвана защищать организм от внутренних и внешних врагов. Внешними врагами являются вирусы, бактерии, простейшие и черви, которые постоянно попадают в наш организм и уничтожаются на дальних рубежах. Внутренними врагами являются раковые клетки, а также клетки, зараженные вирусами или внутриклеточными бактериями.

Ключевые для иммунитета понятия — «антиген» и «воспаление». Антиген — это какая-либо молекула, которую способна узнать и атаковать иммунная система. Практически что угодно может быть антигеном. Воспаление же — это реакция ткани на повреждение или опасность такого повреждения. Молекулы, запускающие воспаление, называются провоспалительными, а блокирующие его — противовоспалительными.

Когда паразит попадает в организм, первым делом его встречает врожденный иммунитет, клетки которого (макрофаги) есть во всех тканях. Антигеном в данном случае служат нехарактерные для нашего организма молекулы — клеточная стенка бактерий, двухцепочечная РНК некоторых вирусов, свободно плавающая в межклеточном пространстве наша ДНК и так далее. При обнаружении пришельцев, клетки врожденного иммунитета пытаются их уничтожить, параллельно выделяя провоспалительные молекулы (рис. 5). Воспаленная ткань блокирует выход паразита из места проникновения в остальной организм и привлекает новые клетки иммунитета к месту повреждения.

Фагоцит пожирает бактерии

Рисунок 5. Фагоцит пожирает бактерии.

Если врожденному иммунитету не удается уничтожить захватчиков, в дело вступает адаптивный иммунитет. Происходит это отнюдь не сразу: активации адаптивного ответа предшествуют 3–4 дня подготовки в лимфоузлах (при этом лимфоузлы увеличиваются в размерах, что является признаком инфекционного заболевания). Начинается все с того, что некоторые из клеток врожденного иммунитета прибывают в лимфоузел, неся на себе антигены из места поражения. Антигенами в данном случае выступают короткие (от 8 до 20 аминокислот) пептиды из белков инфекционного агента и окружающих тканей. По сути, макрофаг (или специализированный активатор адаптивного иммунитета — дендритная клетка) просто захватывает из места воспаления образцы растворенных белков, ошмётков паразита и погибших клеток и приносит в лимфоузел.

В лимфоузле его встречают наивные (неактивированные) клетки адаптивного иммунитета — Т-лимфоциты. Каждый лимфоцит, выйдя из места своего формирования, несет на себе уникальный рецептор, который формируется путем направленного внесения мутаций в геном. Заранее неизвестно, может ли этот рецептор распознать какой-либо антиген, но его вариантов так много (по некоторым оценкам, у нас может быть до 10 48 разных типов этого рецептора, но большая часть их будет нефункциональна), что в течение нескольких часов в лимфоузле обнаруживается как минимум несколько клеток, способных распознать антигены паразита. Затем эти клетки делятся, активируются и отправляются в поврежденную ткань, где отыскивают свои антигены и уничтожают как самих захватчиков, так и зараженные клетки, если мы говорим о вирусе или внутриклеточной бактерии (рис. 6).

Читать статью  Рефлексотерапия: Целебное искусство восточной медицины

Т-лимфоциты убивают раковую клетку

Рисунок 6. Т-лимфоциты (красные) убивают раковую клетку (синяя) своего же организма. После получения сигнала раковая клетка начинает распадаться на небольшие пузырьки, которые затем съедят клетки врожденного иммунитета.

Иммунологическая толерантность

Иммунная система — единственная из систем организма, в чью задачу входит уничтожение других живых существ — отдельных клеток или многоклеточных организмов. Причем наши собственные клетки тоже часто должны уничтожаться, если они заражены вирусом, бактерией или превратились в раковые. При этом необходимо избегать иммунного ответа на нормальные клетки. Если такой ответ развивается — возникает аутоиммунное заболевание.

Чтобы этого избежать, в нашем организме есть система создания иммунологической толерантности — защиты «своего» от иммунитета. Центральная толерантность заключается в уничтожении в процессе развития тех Т-лимфоцитов, которые мутировали свои рецепторы так, что они могут узнать и атаковать свои антигены. Часть таких лимфоцитов из убийц превращается в защитников (так называемые регуляторные Т-лимфоциты) — они узнают заведомо «свой» антиген и подавляют любой иммунный ответ против него.

Периферическая толерантность возникает, когда Т-лимфоцит распознает антиген в лимфоузлах, но никакого воспаления в месте, откуда этот антиген попал в лимфоузел, нет. Напротив, высока концентрация противовоспалительных молекул. Такой лимфоцит опять-таки или уничтожается, или превращается в регуляторный.

Паразиты и симбионты

Миллиарды лет эволюции крупные многоклеточные организмы были домом и едой для более мелких одноклеточных и многоклеточных. Человек тут не исключение — ведь мы являемся как хорошим источником пищи, так и отличным защитником для всего, что сумеет поселиться внутри нас или на нас.

Эволюция поделила этих сожителей на 2 большие группы — паразиты и симбионты. Паразиты делают ставку на быстрое размножение. У них есть возможность подавления врожденного иммунитета, а пока адаптивный активируется, они уже успевают размножиться за счет наших ресурсов и передать инфекцию дальше. Так действует, например, вирус гриппа или бактериальная пневмония.

Симбионты же научились подавлять как врожденный, так и адаптивный иммунитеты. Для этого им пришлось умерить свои аппетиты — если клетки организма постоянно повреждаются, то никакие уловки не смогут предотвратить активацию иммунитета. Потому они поселились на поверхностях нашего тела, прежде всего на поверхности ЖКТ, где они получают лишь часть нашей пищи, но не покушаются на сам организм.

Помимо этого, они научились подавлять воспаление, выделяя вещества, которые похожи на наши противовоспалительные молекулы. Макрофаги врожденного иммунитета, столкнувшись с такими бактериями, могут почувствовать антигены клеточной стенки, но не активируются, так как подавлены противовоспалительным фоном вокруг.

Третьим механизмом защиты стала антигенная мимикрия. Для адаптивного иммунитета основным антигеном являются пептиды из белков. И многие наши симбионты в ходе эволюции поменяли свой белковый состав так, чтобы в нем был максимум пептидов, похожих на наши. Таким образом они встают под защиту регуляторных лимфоцитов. Этот механизм характерен для всех видов наших сожителей — бактерий, червей (рис. 7), вирусов и так далее.

Власоглав

Рисунок 7. Власоглав — один из гельминтов, активно изучаемых в рамках гигиенической гипотезы.

В течение миллионов лет каждая особь нашего вида, рождаясь, сразу же вступала в контакт с симбионтами, населявшими кожу, слизистые и кишечники своих собратьев. Со временем организм научился извлекать выгоду из такого постоянного неустранимого сосуществования. В частности, способность бактерий и червей создавать сильный противовоспалительный фон в месте своего обитания стала за это время ключевым фактором создания периферической толерантности. Она распространилась как на антигены самих сожителей, так и на сопутствующие им — антигены пищи (в кишечнике), пыли и пыльцы (в легких) и собственного организма (те самые антигены, которые сожители развили в ходе антигенной мимикрии).

И снова гигиеническая гипотеза

Внимательный читатель уже смог уловить, где тут связь. Особенность второго эпидемиологического перехода состоит в том, что мы с вами чисты, как никогда прежде, лишены практически всех червей и многих патогенов. Ребенок видит свою первую грязь или лужу отнюдь не в первые дни жизни, как раньше. Антибиотики и правила гигиены, центральное водоснабжение и мытье асфальта шампунем несомненно сделали нашу жизнь лучше. Но незаметно для себя вместе с «грязью» мы также начали устранять из своей жизни и часть тех самых симбионтов, червей и бактерий (а по мнению некоторых ученых — и некоторых вирусов), которые помогали нам создавать толерантность к собственному организму и аллергенам окружающей среды.

Уже сейчас мы имеем доказательства того, что заражение некоторыми видами симбиотической флоры ведет к снижению частоты многих аутоиммунных заболеваний [9], [10]. Это как раз та самая флора, которая широко представлена в странах третьего мира и почти не представлена в развитых странах. Пример с «остановкой» рассеянного склероза лишь самый яркий, но таких примеров намного больше. Показано, что у пациентов, зараженных таким ныне изгнанным «паразитом», повышается количество регуляторных Т-клеток, возрастает концентрация противовоспалительных молекул [9]. Изгнание симбионта возвращает все вспять. У некоторых симбионтов выявлена сильная связь с диабетом, у других — с рассеянным склерозом и так далее.

Особенно сильно на риск развития таких заболеваний влияет первый год жизни. Если в этот период ребенок оказывается в деревне, проводит некоторое время в больших группах сверстников (в больнице или в детском саду) и вообще чаще встречается с инфекциями — риск развития аутоиммунных заболеваний серьезно снижается [11], [12].

Разумеется, не только микробиом (совокупность всех симбиотических микроорганизмов конкретного человека) [13] и гельминты влияют на риск развития аутоиммунных и аллергических реакций. Есть и генетическая предрасположенность, и условия, в которых человек впервые встречается с тем или иным внешним антигеном. Есть некоторые микроорганизмы, которые не защищают, а, напротив, провоцируют аутоиммунные заболевания. Например, стрептококк способен вызывать ревматизм, а некоторые стафилококки производят суперантиген, который неспецифически запускает все клоны Т-лимфоцитов с любым рецептором — это тоже может привести к аутоиммунным заболеваниям.

Но исключения лишь подтверждают правило. Способность симбионтов и паразитов влиять, позитивно или негативно, на развитие аутоиммунных заболеваний — уже доказанный факт. Что делать с этой информацией, врачи и ученые пока не знают. Мы пробовали получать гомогенаты червей и использовать их в качестве лекарства [14]. Это не сработало. Иммунологи выясняют механизмы, с помощью которых черви достигают того, что недоступно всем врачам мира, а врачи и фармацевтические компании разрабатывают инновационные методы терапии. По состоянию на 2015 год во всем мире проводилось свыше 20 клинических испытаний «гельминтной терапии», в ходе которой пациенты принимают дозированную, полученную в стерильных условиях лучших фармпроизводств суспензию живых яиц глистов (табл.) [15]. Несмотря на неплохие результаты [16], проблемы все же остаются [4]. Например, часто гельминтов приходится удалять из-за развивающегося воспалительного заболевания кишечника. Но лучшего варианта у нас пока нет.

Таблица. Сводная таблица всех клинических испытаний гельминтной терапии на 2015 год по всему миру.Составлена по [15].

Заболевание Количество исследований Общее количество пациентов Результаты
Болезнь Крона 6 543 Показана безопасность и статистически значимые улучшения у большинства пациентов.
Неспецифический язвенный колит 3 192 Показана безопасность и статистически значимые улучшения у большинства пациентов.
Рассеянный склероз 6 156 Показана безопасность, статистически значимые улучшения у части пациентов.
Непереносимость глютена (целиакия) 2 35 Исследования только начались
Расстройства аутического спектра 3 90 Пилотное исследование показало эффективность, подтверждающие только начаты
Псориаз 3 55 Исследования только начались
Аллергия на арахис 1 18 Исследования только начались
Бронхиальная астма 1 32 Зафиксированы статистически недостоверные улучшения
Аллергический риноконъюнктивит 2 130 Эффективность не показана
Ревматоидный артрит 1 50 Исследование только началось

О ревматоидном артрите рассказано в статье «Ревматоидный артрит: изменить состав суставов» [17], а псориазу на «Биомолекуле» посвящен целый спецпроект — «Псориаз». — Ред.

Что же делать нам, простым смертным, пока ученые по кусочкам разбирают эту тайну и ищут решение? Начать стóит со снижения маниакального стремления к чистоте во всем. Я не предлагаю не мыть руки перед едой. Но довольно часто в последнее время мы перегибаем палку. Антибиотики при каждом чихе, асептические спиртосодержащие гели каждые 10 минут, антибактериальное мыло вместо обычного в ванной. Все эти меры способны спасти вас от эпидемии. Но каждодневное их применение, особенно детьми, способно нанести куда больший урон, чем грипп или пищевое отравление.

10 главных упражнений для тех, у кого нарушено кровообращение

Неврология: лечение позвоночника и заболеваний нервной системы

10 главных упражнений для тех, у кого нарушено кровообращение

Самые частые заболевания, связанные с нарушенным кровообращением — гипертония, варикозное расширение вен конечностей, сердечная недостаточность.

Нормальное кровообращение важно для сердца, всех органов и систем без исключения. «Составляющие» организма не могут правильно работать без поступления с кровью полезных веществ и без своевременного удаления лишнего — продуктов обменных процессов, углекислого газа. Застойные явления могут привести к стойким нарушениям функций.

Причиной нарушенного кровообращения выступает изменение тонуса кровеносных сосудов. Их сужение может возникнуть из-за курения, малоподвижного образа жизни, лишнего веса, заболеваний щитовидной и поджелудочной желез, почек, сердца, развития атеросклероза, тромбоза. Недостаточное кровообращение в ногах связано с сидячей работой или долгим пребыванием на ногах.

Признаки проблем с кровообращением

Симптомы хронической недостаточности кровообращения в головном мозге могут не появляться до ситуации, требующей обильного кровоснабжения: стресса, непривычной физической нагрузки, нахождения в непроветриваемой комнате. Они появляются внезапно: головная боль, онемение части лица, нарушение координации движений, шум в ушах.

Хронически могут появляться такие симптомы: частые головокружения, снижение памяти и работоспособности, ухудшение концентрации внимания, сонливость или бессонница.

К признакам нарушения кровотока в конечностях относят перемежающуюся хромоту (боль при ходьбе и ее отсутствие в покое), холодные руки и ноги при любой погоде, образование сосудистых звездочек, тяжесть, усталость, отеки, судороги в мышцах ног.

Как улучшить кровообращение в ногах

Если не следить за кровообращением в ногах, можно упустить начало развития необратимых нарушений. Плохой кровоток приводит к варикозной болезни — стойкому расширению вен. Для того, чтобы обеспечить нормальный ток крови и тонус сосудов, откажитесь от лифтов и отдайте предпочтение ходьбе по ступенькам. Полезно также ходить пешком, кататься на велосипеде/велотренажере.

А эти упражнения можно делать дома ежедневно:

  • Встаньте на колени, локти — на полу перед собой. На выдохе выпрямите ноги так, чтобы тело образовало букву «Л» , задержитесь на 10 секунд, вернитесь в исходное положение.
  • Лежа на спине имитируйте езду на велосипеде — руки за головой, ноги поднять перпендикулярно туловищу. 30 вращений, количество подходов может варьироваться в зависимости от натренированности мышц.
  • В положении сидя прижмите пятки к полу, поднимите носки, затем — наоборот. Повторить 20-30 раз. Идеально подходит в вечернее время тем, кто страдает от судорог икроножных мышц.
  • Лежа на спине поднимите одну ногу. Вращайте ей по часовой стрелке 20 раз. Повторите с другой ногой против часовой стрелки.
  • Сидя развести прямые ноги в стороны настолько, насколько позволяет растяжка. Наклоняйтесь поочередно в обе стороны по 10 раз.

Как улучшить мозговое кровообращение

Хроническое нарушение мозгового кровообращения — прямой путь к инсульту. Оно чревато и другими неприятными последствиями: нарушениями памяти, ухудшением работоспособности, головокружениями и обмороками, онемением лица.

Вот 5 упражнений для улучшения мозгового кровообращения:

  • Березка. Универсальная поза для улучшения кровотока во всем теле, в том числе — в голове. Начинать нужно с минуты, постепенно увеличивая время.
  • Наклоны во все стороны и вращения головой. Движения должны быть плавными. Не усердствуйте, если потемнело в глазах или закружилась голова — снизьте амплитуду движений после 5-минутного перерыва.
  • Встаньте спиной к стене, сделайте вдох и сильно прижмитесь к ней, напрягая мышцы шеи. Задержитесь на 5 секунд, расслабьтесь.
  • Сидя надавите на лоб ладонью и напрягите мышцы шеи, не давая измениться положению головы. Зафиксируйте положение на задержке дыхания на 5-10 секунд, выдохните, расслабьтесь. Достаточно 4-7 повторов.
  • Сидя за столом упритесь в него локтем. Ладонь прижмите к виску. Наклоняйте голову в сторону руки, сопротивляйтесь ладонью. Держите мышцы в напряжении 5-10 секунд, после повторить с другой стороной.

Когда нужно немедленно идти к врачу

Симптомы острого нарушения мозгового кровообращения — повод вызвать скорую:

  • асимметрия лица, языка;
  • онемение, слабость, паралич конечности;
  • нарушения речи;
  • двоение в глазах, потеря фокусировки зрения;
  • рвота;
  • сильное нарушение координации движений ( «пьяная» походка);
  • спутанность сознания;
  • нетипично сильная головная боль.

Медицинская помощь нужна и тогда, когда симптомы хронического нарушения кровообращения не проходят долгое время, а упражнения не помогают вернуть тонус сосудам. Если в течение нескольких дней сохраняется сильное головокружение, головная боль, сонливость, нарушение концентрации внимания, утомляемость, обратитесь к терапевту или неврологу.

Некоторые признаки нарушенного кровообращения в ногах также требуют врачебной помощи. Сосудистые звездочки, выпячивания вен, длительно сохраняющиеся синяки, непроходящие судороги икроножных мышц — повод посетить флеболога.

Здоровье без лекарств: возможно ли?

Рефлексотерапия — один из самых эффективных методов безмедикаментозного лечения. Её история насчитывает…

Остеохондроз — не смертельно ли это? Интервью с врачом

Почему у одних людей остеохондроз начинается ещё в раннем возрасте, а у других его нет и после 50?

Мануальная терапия позвоночника и суставов

Мануальная терапия — это выполняемый руками комплекс биомеханических приёмов, направленных на устранение…

Источник https://scfh.ru/papers/biotekhnologii-meditsine-budushchego/

Источник https://biomolecula.ru/articles/starye-druzia-kliuch-k-autoimmunnym-zabolevaniiam

Источник https://mz-clinic.ru/articles/10-glavnyh-uprazhnenij-dlja-teh-u-kogo-narusheno-krovoobrashenie.html

Понравилась статья? Поделиться с друзьями: